

MD simulations of diffusion, sputtering and bubble formation in liquid Li

Z. Insepov and A. Hassanein CPH, Energy Technology Division

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- ☐ Introduction H, Li potentials
- ☐ Diffusivity of H,D,T atoms in Lithium
- Sputtering of Li by H, D, T ions
- Bubble formation in liquid Li

H/Li interaction potential

MD method needs accurate interaction potentials between the particles in the system.

Recently, a new H-Li potential was developed by ab-initio calculations of the lowest singlet ¹S and triplet ³S states for LiH and applied for analysis of trapping of cold atoms in [1].

The singlet form of this H-Li potential (circles - tabulated data) were used for building the energy and force cubic splines (red and blue lines).

[1] N. Geum et al, JCP115 (2001) p.5984

H-Li potential well (blue line) is much deeper than the He-Li (red line) and Li-Li potential (black line).

Analytical EAM-Li-Li potential #1

TB QM (Eq.1) was used in [1] for obtaining a suitable ion-ion potential for disordered Lithium systems (small clusters, surfaces).

$$(\varepsilon_{ia}^{0} - E) |ia\rangle + \sum_{j \neq i} \sum_{b} t_{ab}^{ij}(r_{ij}) |ib\rangle = 0, \quad (1)$$

$$U_{\rm coh} = U_{\rm el} + U_{\rm rep}$$

$$U_{\text{rep}} = \sum_{i} \varepsilon_{0} \sum_{j \neq i} \exp \left[-p \left(\frac{r_{ij}}{r_{0}} - 1 \right) \right],$$

$$U_{\text{el}} = -\sum_{i} \left\{ \sum_{j \neq i} \varsigma^{2} \exp \left[-2q \left(\frac{r_{ij}}{r_{0}} - 1 \right) \right] \right\}^{\frac{1}{2}}$$

Parameters used for this simulation:

Li-Li: ϵ_0 , mRy ς_0 , mRy p q r_0 , a.u. 2.4450 23.889 7.75 0.737 5.490

[1] Y. Li et al, Phys. Rev. B57 (1998) 15519

Li-Li bulk interaction potential #2

The tabulated Li-Li bulk potential and its first derivative given in [1,2] (circles) and cubic splines (red and blue lines) used in this work.

References:

- [1] M. Canales et al, J. Phys. 5 (1993) 3095.
- [2] M. Canales, Phys.Rev. E50 (1994) 3656.
- [3] H. Morimoto et al, NASDA reports, 1999.

Li, H, D, Tr displacements

Liquid Li displacements

(2)
$$D_{\alpha} = \lim_{t \to \infty} \frac{\left\langle \Delta r_{\alpha}^{2}(t) \right\rangle}{6t},$$

$$\alpha = Li, H, D, T$$

The diffusion coefficients were obtained by two methods: a) 1st method uses Eq. 2 which obtains diffusion coefficient as a tangent of the linear region of the displacement function; b) The 2^{nd} method consists in calculation of the velocity auto-correlation functions Acf (t) and then in obtaining the spectral density D(w). The diffusion constants are the values at w=0.

Li, H Acf and diffusivity

(3)
$$Acf(t) = \left(\frac{m}{3k_BT}\right) \sum_{i=1}^{N} \left\langle \vec{v}_i(0) \vec{v}_i(t) \right\rangle_{\tau}$$

$$Acf(t) = \left(\frac{m}{3k_BT}\right) \sum_{i=1}^{N} \left\langle \vec{v}_i(0) \vec{v}_i(t) \right\rangle_{\tau}$$
 (4)
$$D(\omega) = \left(\frac{k_BT}{m}\right) \int_{0}^{\infty} Acf(t) \cos(\omega t) dt$$

D, Tr, Li acf and diffusivities

Diffusivity of H, D, Tr in liquid Li

Hydrogen cluster formation in liquid Li

n	1	2	3	4	5	6	7
Nn (Hydrogen)	72	12	3	2	1	1	0
Relative number of Hn, %	7 9. 1	13. 2	3. 3	2. 2	1. 1	1. 1	0
Nn (Tritium)	73	11	4	_1	_1	_1	0
Relative number of Trn, %	80. 2	12. 1	4. 4	1. 1	1. 1	1. 1	0

Deuterium clusters in liquid Li @ 480K

Summary #1

- The H-Li potential was tested by calculating the diffusion coefficients of Hydrogen isotopes in liquid Li at various temperatures and densities.
- The calculated tritium diffusion coefficient in liquid Lithium is in good agreement with the experimental results of Buxbaum & Johnson (1985).
- A noticeable amount of hydrogen clusters in liquid Li (>10%) is obtained by this MD study. These clusters are still highly mobile.
- Future MD tasks: a) Temperature stabilization during cluster formation; b) The kinetics of Hn cluster formation could be studied by direct MD.

Outline

- Diffusivity of H, D, T atoms in liquid Lithium
- Sputtering of Li by H,D,T ions
- ☐ Bubble formation in liquid Li

Sputtering simulation model

- The singlet-type H-Li potential given by Geum et al, 2001 was used for simulation of H,D, and T collisions with a lithium surface.
- Lithium surface was modeled by various types of Li-Li potentials.
- Image forces were added to the interaction between Hydrogen ions with the liquid Lithium surface.
- Sputtering yield, reflection and sticking coefficients, energies etc. were calculated for a wide range of temperatures and ion energies in the interval of 10 – 300 eV.

H-Li collision movies

Sputtering yields of Li surface with H, D, Tr ions

Comparison of D/Li sputt. yields: MD vs SRIM

Outline

- Diffusion coefficients of H, D, T in liquid Lithium
- ☐ Sputtering Yields of H, D, T on a Li surface
- Bubble formation in liquid Li

Liquid Li density vs Temperature

8.0

0.0

0.2

0.4

ρ*

20

0.6

Surface tension and free energy of a cavity

The Tolman's formula

$$\gamma_{S}/\gamma_{\infty} = 1 - \frac{2\delta}{R_{S}},$$

$$\delta = R_e - R_S$$

g_S – Bubble surface tension,

 \mathbf{g}_{∞} – plane surface tension,

Re, Rs – radii for the equimolar surface and the surface of tension

$$\Delta \dot{U}(r) = -\frac{4}{3}\pi r^3 \cdot \Delta \omega + 4\pi r^2 \cdot \gamma_S,$$

$$\Delta \omega = P_{\sigma} - P_I$$

$$\frac{d\Delta\Omega}{dr} = 0 \Rightarrow \Delta P = \frac{2\gamma_S}{R_S} \text{(Laplace eq.)}$$

We obtained radial pressures around a bubble in liquid in analogy with the droplet capillary theory [1,2]. Bubbles in a LJ-system were studied by MD in [3].

$$R_S = \frac{2\gamma_S}{P_l - P_g},$$

$$R_e = \frac{1}{\rho_l - \rho_g} \int_0^\infty r^3 \frac{d\rho}{dr} dr.$$

References

- [1] Thompson, Gubbins et al, JCP, 1984
- [2] Lee, Telo da Gama, Gubbins, JCP, 1986
- [3] Park, Weng, Tien, Int. J. Heat & Mass Transfer, 12001

MD calculation of variables

$$P(r) = P_{N}(r) + P_{Tr}(r),$$

$$P_{T}(r) = P_{N}(r) + \frac{r}{2} \frac{dP_{N}(r)}{dr},$$

$$P_{N}(r) = P_{Kin}(r) + P_{U}(r),$$

$$P_{Kin}(r) = \rho(r)k_{B}T,$$

$$P_{U}(r) = -\frac{1}{4\pi r} \sum_{k} |\vec{r} \cdot \vec{r}_{ij}| \frac{1}{r_{ij}} \frac{dU(r_{ij})}{dr_{ij}},$$

$$\gamma_{S}^{3} = -\frac{1}{8} (P_{l} - P_{g}) \int_{0}^{\infty} r^{3} \frac{dP_{N}}{dr} dr.$$

Average radial densities and pressures were calculated within a narrow spherical layers and compared with experimental data for plane surfaces (table).

$$\langle \rho(r_k) \rangle = \langle \Delta N / \Delta r \rangle_k, k = 1 - n$$

Metal	g, mN/m	g, [e/s2]	g, [eV/A]
Hg	500	0.264	2.226
Ga	750	0.396	3.339
ln	550	0.290	2.448
K	100	0.053	0.445
Li	398	0.210	1.772

Surface tension of cavity in Li

Cavity dynamics

Radial density around cavities in liquid Li

Normal pressure in liquid Li

remperature dependence of r

P_N

Radial density profiles for various bubble sizes

Radial normal pressure profiles

Tolman's formula and Gibbs energy

Temperature dependence of g, Wmin

$$W_{\rm exp} = \frac{4\pi}{3} R_S^3 \cdot \gamma_{\infty}$$

Summary

- The new H-Li potential was tested by calculating the diffusion constants of H,D, and Tr in liquid Li and our results show that the tritium data agree well with experiment of Buxbaum & Johnson, 1985.
- Formation of small Hydrogen clusters was observed by this MD study for the first time. The relative amount of dimers is >10% at 480K.
- H, D, Tr/Li sputtering yield was calculated for the ions energy interval 10-300eV. At an energy below 50eV, the MD data are 3-10 times larger than the SRIM results.
- Cavity formation in liquid Li was studied by MD. Surface tension of small cavities was found to be larger than the experimental value for the plane surface by a factor of 2-3.
- Free energy of cavity formation in liquid lithium was calculated for a few cavity radii and they show that the cavity formation is allowed by thermodynamics.

